

Welcome to libreant’s documentation!

Contents:

	About libreant

	Libreant architecture
	How to set up an aggregator

	Librarian
	Presets system

	Sysadmin
	Installation

	Execution

	Upgrading

	How to write documentation
	Markup language

	Documentation directory

	Documenting code

	How to develop
	Ingredients

	Installation

	Code design

	Testing

	Contributing

	API
	archivant package

	conf package

	libreantdb package

	presets package

	users package

	Libreant changelog
	next

	0.5

	0.4

	0.3

Indices and tables

	Index

	Module Index

	Search Page

About libreant

Libreant is a book manager for both digital and paper documents. It can store any kind of digital data actually, not only books. It’s db structure makes Libreant highly customizable, documents can be archived by their types with different metadata set, moreover you can create your own preset and choose default descriptors for that kind of volume.
The search function looks throught over the db, and rank matches powered by ElasticSearch. The language of metadata (as title, or description) is a compulsory field, since the db will use it to optimize the search.

Elements into Libreant are defined as volumes, for each volume you can attach many files, usually this files are pdf or book scansions.
Libreant is built and intended as a federation of nodes, every node is an archive.
From a node you can search into friend-nodes, with OpenSearch protocol. Possible extensions into Web are suspended.

Libreant aims to share, find and save books. It can be used by librarian who needs an archive system or to collect digital items in a file sharing project.

Libreant is created by InsomniaLab, a hacklab in Rome.
for any doubts, suggestion or similar write to:
insomnialab@hacari.org

Libreant is Ubercool

Libreant architecture

Libreant is meant to be a distributed system.
Actually, you can even think of nodes as standalone-systems.
A node is not aware of other nodes. It is a single point of distribution with no
knowledge of other points.

The system that binds the nodes together is the aggregator; an aggregator acts only
as a client with respect to the nodes. Therefore multiple aggregators can coexist.
This also implies that the node administration does not involve the management of
the aggregation mechanism and of the aggregators themselves.
Similarly, it is possible to run an aggregator without running a libreant node.
As a consequence, a node cannot choose whether to be aggregated or not.

The aggregation mechanism is based on Opensearch [http://www.opensearch.org/Home], and relies on two mandatory fields:

	the Opensearch description [http://www.opensearch.org/Specifications/OpenSearch/1.1#OpenSearch_description_document]

	the Opensearch response [http://www.opensearch.org/Specifications/OpenSearch/1.1#OpenSearch_response_elements]

meaning that this entries are mandatory on a node in order to be aggregated.
The result component heavily relies on the relevance [http://www.opensearch.org/Specifications/OpenSearch/Extensions/Relevance/1.0] extension of the response spec.

We blindly trust this relevance field, so a malicious node could bias the overall
result, simply increasing the relevance fields of its entries.
In this way, the management of the aggregators implies also the task of checking
the fairness of the aggregated nodes.

How to set up an aggregator

	Install Libreant. Follow the instructions on Installation.

	Launch Libreant setting the AGHERANT_DESCRIPTIONS configuration parameters.
Its value should be a list of URLs. Each URL represents the Opensearch
description. For Libreant it’s located in /description.xml, so a typical URL looks
like:

http://your.doma.in/description.xml

and a typical invocation looks like:

libreant --agherant-descriptions "http://your.doma.in/description.xml http://other.node/description.xml"

If you want to aggregate the same libreant instance that you are running, there’s a shortcut: just use SELF. Here’s an example:

libreant --agherant-descriptions "SELF http://other.node/description.xml"

Note

Through agherant command line program, it’s possible to run an aggregator without launching the whole libreant software

Librarian

This chapter is dedicated to librarians, people who manage the libreant node, decide how to structure the database, organize informations and supervise the catalogue.

Presets system

One of the things that make libreant powerful is that there are almost no assumptions and restrictions about informations you can catalog with it. You can use libreant to store digital book, organize physical book metadata, CDs, comics, organization reports, posters and so on.

Stored object informations are organized in a collection of key-values pairs:

title: Heart of Darkness
author: Joseph Conrad
year: 1899
country: United Kingdom

Normally, when users insert new objects in the database they can choose the number and the type of key-values pairs to save, without any restrictions. Language field is the only one information that is always required.

All this freedom could be difficult to administrate, so libreant provide the preset system as a useful tool to help librarians.

Preset

A preset is a set of rules and properties that denote a class of object.
For example, if you want to store physical book metadata in your libreant node and for every book you want to remember the date in which you bought that book, in this case you can create a preset for class bought-book that has always a property with id date.

Quick steps creation

To create a new preset you need to create a new json file, populate it and configure libreant to use it.

Every preset is described by one json formatted text file. So in order to create a new preset you need to create a new text file with .json extension.
This is the simplest preset you can do:

{
 "id": "bought-book",
 "properties": []
}

Once you have created all your presets you can use the PRESET_PATHS configuration variable to make libreant use them. PRESET_PATHS accepts a list of paths (strings), you can pass paths to file or folders containing presets.

Start libreant and go to the add page, you should have a list menu from which you can choose one of your presets.
If some of your presets are not listed, you can take a look at log messages to investigate the problem.

Preset structure

The preset file has some general fields that describe the matadata of the preset (id, description, etc...) and a list of properties describing informations that objects belonging to this preset must/should have.

Preset example:

{
 "id": "bought-book",
 "allow_upload": false,
 "description": "bought physical book",
 "properties": [{ "id": "title",
 "description": "title of the book",
 "required": true
 },
 { "id": "author",
 "description": "author of the book",
 "required": true
 },
 { "id": "date",
 "description": "date in which book was bought",
 "required": true
 },
 { "id": "genre",
 "description": "genre of the book",
 "required": true,
 "type": "enum",
 "values": ["novel", "scientific", "essay", "poetry"]
 }]
}

General fields:

	Key
	Type
	Required
	Default
	Description

	id
	string
	True
	
	id of the preset

	description
	string
	False
	“”
	a brief description of the preset

	allow_upload
	boolean
	False
	True
	permits upload of files during submission

	properties
	list
	True
	
	list of properties

Property fields:

	Key
	Type
	Required
	Default
	Description

	id
	string
	True
	
	id of the property

	description
	string
	False
	“”
	a brief description of the property

	required
	boolean
	False
	False
	permits to leave this property empty during submission

	type
	string
	False
	“string”
	the type of this property

	values
	list
	Enum type
	
	used if type is “enum”

String type

String type properties will appear in the add page as a plain text field.

Enum type

Enum type properties will appear in the add page as a list of values. Possible values must be placed in values field as list of strings. values field are required if the type of the same property is “enum”.

Sysadmin

Installation

Libreant is written in Python and uses Elasticsearch as the underlying search engine.
In the follwoing sections there are the step-by-step guides to install Libreant on different linux-based operating system:

	Debian, Ubuntu and all the debian based distribution

	Arch Linux

Debian & Ubuntu

System dependencies

Install Elasticsearch

The recommended way of installing Elasticsearch on debian-based distro is through the official APT repository.

Note

If you have any problem installing elasticsearch try to follow the official deb installation guide [https://www.elastic.co/guide/en/elasticsearch/reference/6.0/deb.html]

In order to follow the Elasticsearch installation steps we needs to install some common packages:

sudo apt-get update && sudo apt-get install apt-transport-https wget gnupg ca-certificates

Download and install the Public Signing Key for elasticsearch repo:

wget -qO - https://artifacts.elastic.co/GPG-KEY-elasticsearch | sudo apt-key add -

Add elasticsearch repository:

echo "deb https://artifacts.elastic.co/packages/6.x/apt stable main" | sudo tee -a /etc/apt/sources.list.d/elastic-6.x.list

And finally you can install the Elasticsearch package with:

sudo apt-get update && sudo apt-get install openjdk-8-jre-headless procps elasticsearch

Note

The procps provides the ps command that is required by the elasticsearch startup script

Install Python

Libreant is going to be installed into a python virtual environment, thus we need to install it:

sudo apt-get update && sudo apt-get install python2.7 virtualenv python-wheel

Install libreant

Create a virtual env:

virtualenv -p /usr/bin/python2 ve

Install libreant and all python dependencies:

./ve/bin/pip install libreant

Arch

Install all necessary packages:

sudo pacman -Sy python2 python2-setuptools python2-virtualenv grep procps elasticsearch

Note

The procps and grep packages are required by the elasticsearch startup script

Create a virtual env:

virtualenv2 -p /usr/bin/python2 ve

Install libreant and all python dependencies:

./ve/bin/pip install libreant

Execution

Start elasticsearch service:

sudo service elasticsearch start

Note

If you want to automatically start elasticsearch during bootup:

sudo systemctl enable elasticsearch

To execute libreant:

./ve/bin/libreant

Upgrading

Generally speaking, to upgrade libreant you just need to:

./ve/bin/pip install -U libreant

And restart your instance (see the Execution section).

Some versions, however, could need additional actions. We will list them all in
this section.

Upgrade to version 0.5

libreant now supports elasticsearch 2. If you were already using libreant 0.4, you were using elasticsearch 1.x.
You can continue using it if you want. The standard upgrade procedure is enough to have everything working.
However, we suggest you to upgrade to elasticsearch2 sooner or later.

Step 1: stop libreant

For more info, see Execution; something like pkill libreant should do

Step 2: upgrade elasticsearch

Just apply the steps in Installation section as if it was a brand new installation.

Note

If you are using archlinux, you’ve probably made pacman ignore elasticsearch package updates.
In order to install the new elasticsearch version you must remove the IgnorePkg elasticsearch line in /etc/pacman.conf
before trying to upgrade.

Step 3: upgrade DB contents

Libreant ships a tool that will take care of the upgrade. You can run it with
./ve/bin/libreant-db upgrade.

This tool will give you information on the current DB status and ask you for
confirmation before proceding to real changes. Which means that you can run it
without worries, you’re still in time for answering “no” if you change your mind.

The upgrade tool will ask you about converting entries to the new format, and upgrading the index mapping (in elasticsearch jargon, this is somewhat similar to what a TABLE SCHEMA is in SQL)

How to write documentation

We care a lot about documentation. So this chapter is both about technical
reference and guidelines.

Markup language

Documentation is written using restructuredText [http://sphinx-doc.org/rest.html]; it’s a very rich markup
language, so learning it all may be difficult. You can start reading a
quick guide [http://docutils.sourceforge.net/docs/user/rst/quickstart.html]; you can then pass to a slightly longest guide [http://docutils.sourceforge.net/docs/user/rst/quickref.html].

As with all the code, you can learn much just reading pre-existing one. So go
to next section and you’ll know where it is placed.

Documentation directory

Documentation is placed in doc/source/ in libreant repository. Yes, it’s
just a bunch of .rst files. The main one is index.rst, and hist main
part is the toctree directive; the list below it specifies the order in
which to include all the other pages.

Note

If you are trying to add a new page to the documentation, remember to
add its filename to the toctree in index.rst

To build html documentation from it, you should first of all pip install
Sphinx inside your virtualenv. Then you can run python setup.py
build_sphinx. This command will create documentation inside
build/sphinx/html/. So run firefox build/sphinx/html/index.html and you
can read it.

See also

Installation

Documenting code

If you are a developer, you know that well-documented code is very important:
it makes newcomers more comfortable hacking your project, it helps clarifying
what’s the goal of the code you are writing and how other parts of the project
should use it. Keep in mind that libreant must be easily hackable, and the code
should be kept reusable at all levels as much as possible.

Since 99% of libreant code is Python, we’ll focus on it, and especially on
python docstrings.

If you are writing a new module, or anyway creating a new file, the “module
docstring” (that is, the docstring just at the start of the file) should
explain what this module is useful for, which kind of objects will it contain,
and clarify any possible caveat.

The same principle applies to classes and, to a lesser degree, to methods. If a
class docstring is complete enough, it can be the case that function docstring
is redundant. Even in that case, you should at least be very careful in giving
meaningful names to function parameters: they help a lot, and come for free!

How to develop

This chapter is dedicated to developers, and will guide you through code
organization, design choices, etc. This is not a tutorial to python, nor to
git. It will provide pointers and explanation, but will not teach you how to
program.

Ingredients

libreant is coded in python2.7. Its main components are an elasticsearch [https://www.elasticsearch.org/] db, a
Fsdb [https://github.com/ael-code/pyFsdb/] and a web interface based on Flask [http://flask.pocoo.org/].

Details about libraries

Elasticsearch is a big beast. It has a lot of features and it can be scaring. We can suggest this elasticsearch guide [https://www.elasticsearch.org/guide/en/elasticsearch/guide/current/index.html].
The python library for elasticsearch, elasticsearch-py [https://elasticsearch-py.readthedocs.org/], is quite simple to
use, and has a nice documentation.

Fsdb [https://github.com/ael-code/pyFsdb/] is a quite simple “file database”: the main idea behind it is that it is a content-addressable storage. The address is simply the sha1sum of the content.

Flask [http://flask.pocoo.org/] is a “web microframework for python”. It’s not a big and complete solution like django, so you’ll probably get familiar with it quite soon.

Installation

Using virtualenv

We will assume that you are familiar with virtualenvs. If you are not, please
get familiar!

Inside a clean virtualenv, run

python setup.py develop

You are now ready to develop. And you’ll find two tools inside your $PATH:
webant and libreant-manage. The first is a webserver that will run the
web interface of libreant, while the second is a command-line tool to do basic
operations with libreant: exporting/importing items, searching, etc.

Using Vagrant

Download, setup and run the virtual machine:

vagrant up

You will then find in /liberant the installation of liberant, you can login to
the vagrant box with:

vagrant ssh

Code design

This section is devoted to get a better understanding on why the code is like
it is, the principles that guides us, and things like that.

Design choices

	few assumptions about data

	We try to be very generic about the items that libreant will store. We do
not adhere to any standard about book catalogation, nor metadata
organization, nor nothing like that. We leave the libraries free to set
metadata how they prefer. There is only one mandatory field in items,
which is language. The reason it is this way, is that it’s important to
know the language of the metadata in order for full-text search to work
properly. There are also two somewhat-special fields: title and
actors; they are not required, but are sometimes used in the code
(being too much agnostic is soo difficult!)

	no big framework

	we try to avoid huge frameworks like django or similar stuff. This is both
a precise need, and a matter of taste. First of all, libreant uses many
different storage resources (elasticsearch, fsdb, and this list will
probably grow), so most frameworks will not fit our case. But it’s also
because we want to avoid that the code is “locked” in a framework and
therefore difficult to fork.

File organization

setup.py is the file that defines how libreant is installed, how are
packages built, etc.
The most common reason you could care about it, is if you need to add some
dependency to libreant.

libreantdb

libreantdb/ is a package containing an abstraction over elasticsearch.
Again: this is elasticsearch-only, and completely unaware of any other storage,
or the logic of libreant itself.

webant

webant/ is a package; you could think that it only contains web-specific logic,
but this is not the case. Instead, all that is not in libreantdb is in
webant, which is surely a bit counterintuitive.

The web application (defined in webant.py) “contains” a Blueprint [http://flask.pocoo.org/docs/0.10/blueprints/] called
agherant. Agherant is the part of libreant that cares about “aggregating”
multiple nodes in one single search engine. We believe that agherant is an
important component, and if we really want to make libreant a distributed
network, it should be very reusable. That’s why agherant is a blueprint: it
should be reusable easily.

manage.py is what will be installed as libreant-manage: a simple
command-line manager for lot of libreant operations. libreant-manage is
meant to be a tool for developers (reproduce scenarios easily) and sysadmins
(batch operations, debug), surely not for librarians! This program is actually
based on flask-script [https://flask-script.readthedocs.org/en/latest/], so you may wonder why we use flask for something that
is not web related at all; the point is that we use flask as an application
framework more than a web framework.

templates/ is... well, it contains templates. They are written with jinja [http://jinja.pocoo.org/]
templating language. The render_template function

documentation

Documentation is kept on doc/source/ and is comprised of .rst files. The
syntax used is restructuredText [http://sphinx-doc.org/rest.html]. Don’t forget to update documentation when you
change something!

API

You can read API

Coding style

PEP8 [https://www.python.org/dev/peps/pep-0008/] must be used in all the code.

Docstrings are used for autogenerating api documentation, so please don’t
forget to provide clear, detailed explanation of what the module/class/function
does, how to use it, when is it useful, etc.
If you want to be really nice, consider using restructured-text directives [http://sphinx-doc.org/domains.html#signatures]
to improve the structure of the documentation: they’re fun to use.

We care a lot about documentation, so please don’t leave documentation
out-of-date. If you change the parameters that a function is accepting, please
document it. If you are making changes to the end user’s experience, please
fix the user manual.

Never put “binary” files in the source. With ‘binary’, we also mean “any files
that could be obtained programmatically, instead of being included”. This is,
for example, the case of .mo.

Testing

Unit tests are important both as a way of avoding regressions and as a way to document how something behaves.
If your code is testable, you should test it. Yes, even if its behaviour might seem obvious.
If the code you are writing is not easy to test, you should think of making it more easy to test.
We use nose suite [https://nose.readthedocs.org] to manage tests, you can run all the tests and read coverage summary by typing:

python setup.py test

	We usually follow these simple steps to add new tests:

	
	create a directory named test inside the package you want to test

	create a file in this folder test/test_sometestgroupname.py

	write test functions [http://nose.readthedocs.org/en/latest/writing_tests.html#test-functions] inside this file

We prefer not to have one big file, instead we usually group tests in different file with a representative name.
You can see a full testing example in the preset package [https://github.com/insomnia-lab/libreant/tree/master/presets/test].

Note

if you are testing a new package remember to add the new package name in cover-package directive under [nosetests] section in /setup.cfg [https://github.com/insomnia-lab/libreant/blob/master/setup.cfg] file.

Contributing

Like libreant? You can help!

We have a bugtracker [https://github.com/insomnia-lab/libreant/issues], and you are welcome to pick tasks from there :) We use
it also for discussions. Our most typical way of proposing patches is to open a
pull request on github; if, for whatever reason, you are not comfortable with
that, you can just contact us by email and send a patch, or give a link to your
git repository.

API

	archivant package

	conf package

	libreantdb package

	presets package

	users package

archivant package

Submodules

conf package

Submodules

	
conf.config_utils.from_envvar_file(envvar, environ=None)

	

	
conf.config_utils.from_envvars(prefix=None, environ=None, envvars=None, as_json=True)

	Load environment variables in a dictionary

Values are parsed as JSON. If parsing fails with a ValueError,
values are instead used as verbatim strings.

	Parameters:	
	prefix – If None is passed as envvars, all variables from
environ starting with this prefix are imported. The
prefix is stripped upon import.

	envvars – A dictionary of mappings of environment-variable-names
to Flask configuration names. If a list is passed
instead, names are mapped 1:1. If None, see prefix
argument.

	environ – use this dictionary instead of os.environ; this is here
mostly for mockability

	as_json – If False, values will not be parsed as JSON first.

	
conf.config_utils.from_file(fname)

	

	
conf.config_utils.load_configs(envvar_prefix, path=None)

	Load configuration

	The following steps will be undertake:

	
	It will attempt to load configs from file:
if path is provided, it will be used, otherwise the path
will be taken from envvar envvar_prefix + “SETTINGS”.

	all envvars starting with envvar_prefix will be loaded.

libreantdb package

Submodules

presets package

	
class presets.PresetManager(paths, strict=False)

	Bases: object

PresetManager deals with presets loading, validating, storing

you can use it like this:

pm = PresetManager(["/path/to/presets/folder", "/another/path"])

	
MAX_DEPTH = 5

	

Submodules

	
class presets.presetManager.Preset(body)

	Bases: presets.presetManager.Schema

A preset is a set of rules and properties denoting a class of object

	Example:

	A preset could be used to describe which properties an object
that describe a book must have. (title, authors, etc)

	
check_id()

	

	
fields = {'allow_upload': {'default': True, 'required': False, 'type': <type 'bool'>}, 'description': {'default': '', 'required': False, 'type': <type 'basestring'>}, 'id': {'required': True, 'type': <type 'basestring'>, 'check': 'check_id'}, 'properties': {'required': True, 'type': <type 'list'>}}

	

	
validate(data)

	Checks if data respects this preset specification

It will check that every required property is present and
for every property type it will make some specific control.

	
exception presets.presetManager.PresetException(message)

	Bases: exceptions.Exception

	
exception presets.presetManager.PresetFieldTypeException(message)

	Bases: presets.presetManager.PresetException

	
class presets.presetManager.PresetManager(paths, strict=False)

	Bases: object

PresetManager deals with presets loading, validating, storing

you can use it like this:

pm = PresetManager(["/path/to/presets/folder", "/another/path"])

	
MAX_DEPTH = 5

	

	
exception presets.presetManager.PresetMissingFieldException(message)

	Bases: presets.presetManager.PresetException

	
class presets.presetManager.Property(body)

	Bases: presets.presetManager.Schema

A propety describe the format of a peculiarity of a preset

	
check_id()

	

	
check_type()

	

	
check_values()

	

	
fields = {'values': {'required': 'required_values', 'type': <type 'list'>, 'check': 'check_values'}, 'required': {'default': False, 'required': False, 'type': <type 'bool'>}, 'type': {'default': 'string', 'required': False, 'type': <type 'basestring'>, 'check': 'check_type'}, 'id': {'required': True, 'type': <type 'basestring'>, 'check': 'check_id'}, 'description': {'default': '', 'required': False, 'type': <type 'basestring'>}}

	

	
required_values()

	

	
types = ['string', 'enum']

	fields is used as in Preset class

	
class presets.presetManager.Schema

	Bases: object

Schema is the parent of all the classes that needs to verify
a specific object structure.

	all child class in order to use schema validation must:

	
	describe the desired object schema using self.fields

	save input object in self.body

self.fields must be a dict,
where keys match the relative self.body keys
and values describe how relative self.body valuse must be.

Example:

self.fields = { 'description': {
 'type': basestring,
 'required': False,
 'default': ""
 },
 'allow_upload': {
 'type': bool,
 'required': False,
 'default': True
 }
 }

	
fields = {}

	

users package

Submodules

Libreant changelog

next

Dependencies:

	Added support for Elasticsearch 5.x and 6.x (PR #321)

	Gevent: added support for gevent version till 1.2.2

0.5

	Added supoort to Elasticsearch 2.x versions. (PR #281)

	Changed default capability for anonymous (non logged) user: now she can read all volumes
in the collection.

Tip: if you have an existing and already initialized user database, it won’t be changed, i.e.
if you upgrade from a previous version of libreant and you have existing users, the anonymous
user won’t get the read capability.
In the case you want to add this capability to the already existing anonymous user you can use the
following command:

libreant-users --users-db <users-db-url> group cap-add anonymous "volumes/*" R

CLI:

	Added new command libreant-db import to import volumes all at once. (PR #291)

Web Interface:

	While adding a new book if it is available the language will be autocompleted
using the one suggested by the client’s browser. (based on Accept-Language http field).
Thanks @leonaard (PR #288)

API:

	
	Added endpoints to retrieve collections

	
	/api/v1/groups/

	/api/v1/users/

	/api/v1/capabilities/

Dependencies:

	Fsdb: added support till version 1.2.1 (PR #277)

	Gevent: added support for the new version 1.1.1 (PR #298)

	Flask: added support till version 0.11.1 (PR #299)

Bugfixes:

	
	#255 Libreant starts also if it fails to read the conf file:

	fixed by PR #260.
If some error is encountered while reading the configuration file the stack trace
will be printed if the debug mode is active otherwise a colored one-line message
with the cause of the error will be printed.
Moreover the path of the configuration file will be printed if available.

	
	#283 Read configuration file error:

	If the configuration is a valid JSON formatted file but it’s not a
dictionary an exception is raised.
(PR #286)

	Tests for Webant were leaving leftover files around (commit 1c050a8)

	In single-user-mode all the users related REST api enpoints are disabled (PR #278)

	CLI: don’t print ‘Error’ string twice (PR #279)

	
	#287 missing authentication/authorization layer for REST api.

	For the moment the only supported authentication method is the cookie based one (login through the web UI)

0.4

Web Interface:

	The page to modify metadata of volumes has been added. If you have
enough permission you should see a button with a pencil on the single-volume-view page.

	Added support for paginated results in search page.

CLI:

	added new command libreant-db insert-volume to insert a volume along with its attachments.

	added new command libreant-db attach to attach new files to an already existing volume.

Logs:

	changed default log level to INFO.

	all startup messages are now printed using loggers.

	using recent versions of gevent (>= 1.1b1) it is now possible to
have a completely uniform log format.

Warning:

	Due to breaking changes introduced in new version of Elasticsearch (deprecation of _timestamp field),
it is not possible to use libreant with version of Elasticsearch major or equal to 2.0.
Probably in the next release we’ll provide support for these versions.

0.3

Major changes:

	Implemented a role-based access control layer.
This means that libreant now support the common login procedure.
This functionality isn’t documented yet, anyway you can use the brand new libreant-users command to manage users, groups and capabilities,
and enable this feature at runtime with the --users-db parameter.
The default user is (user: admin, password: admin)

Web interface:

	Added possibility to delete a volume through a button on the single-volume-view page.

	New user menu (only in users-mode)

	New login/logut pages.

	Improoved error messages/pages

Deployment:

	Removed elasticsearch strong dependecy.
Now libreant can be started with elasticsearch still not ready or not running.

	Bugfix: make libreant command exits with code 1 on exception.

	Fixed elasticsearch-py version dependency. Now the version must be >=1 and <2.

	Reloader is used only in debug mode (--debug).

	More uniform logs.

Documentation:

	The suggested version for elasticsearch installation has been updated: 1.4 -> 1.7

	A lot of packages have been inserted in the official docs.

 Python Module Index

 c |
 p

 		 	

 		
 c	

 	[image: -]
 	
 conf	

 	
 	
 conf.config_utils	

 		 	

 		
 p	

 	[image: -]
 	
 presets	

 	
 	
 presets.presetManager	

Index

 C
 | F
 | L
 | M
 | P
 | R
 | S
 | T
 | V

C

 	
 	check_id() (presets.presetManager.Preset method)

 	(presets.presetManager.Property method)

 	check_type() (presets.presetManager.Property method)

 	
 	check_values() (presets.presetManager.Property method)

 	conf (module)

 	conf.config_utils (module)

F

 	
 	fields (presets.presetManager.Preset attribute)

 	(presets.presetManager.Property attribute)

 	(presets.presetManager.Schema attribute)

 	
 	from_envvar_file() (in module conf.config_utils)

 	from_envvars() (in module conf.config_utils)

 	from_file() (in module conf.config_utils)

L

 	
 	load_configs() (in module conf.config_utils)

M

 	
 	MAX_DEPTH (presets.PresetManager attribute)

 	(presets.presetManager.PresetManager attribute)

P

 	
 	Preset (class in presets.presetManager)

 	PresetException

 	PresetFieldTypeException

 	PresetManager (class in presets)

 	(class in presets.presetManager)

 	
 	PresetMissingFieldException

 	presets (module)

 	presets.presetManager (module)

 	Property (class in presets.presetManager)

R

 	
 	required_values() (presets.presetManager.Property method)

S

 	
 	Schema (class in presets.presetManager)

T

 	
 	types (presets.presetManager.Property attribute)

V

 	
 	validate() (presets.presetManager.Preset method)

 _static/up.png

_static/minus.png

_static/comment-close.png

_static/ajax-loader.gif

_static/file.png

_static/down-pressed.png

_static/plus.png

_static/comment-bright.png

_static/up-pressed.png

nav.xhtml

 Table of Contents

 		Welcome to libreant's documentation!

 		About libreant

 		Libreant architecture

 		How to set up an aggregator

 		Librarian

 		Presets system

 		Preset

 		Quick steps creation

 		Preset structure

 		Sysadmin

 		Installation

 		Debian & Ubuntu

 		Arch

 		Execution

 		Upgrading

 		Upgrade to version 0.5

 		How to write documentation

 		Markup language

 		Documentation directory

 		Documenting code

 		How to develop

 		Ingredients

 		Details about libraries

 		Installation

 		Using virtualenv

 		Using Vagrant

 		Code design

 		Design choices

 		File organization

 		API

 		Coding style

 		Testing

 		Contributing

 		API

 		archivant package

 		Submodules

 		conf package

 		Submodules

 		libreantdb package

 		Submodules

 		presets package

 		Submodules

 		users package

 		Submodules

 		Libreant changelog

 		next

 		Dependencies:

 		0.5

 		CLI:

 		Web Interface:

 		API:

 		Dependencies:

 		Bugfixes:

 		0.4

 		Web Interface:

 		CLI:

 		Logs:

 		Warning:

 		0.3

 		Major changes:

 		Web interface:

 		Deployment:

 		Documentation:

_static/down.png

_static/comment.png

